Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin Med J (Engl) ; 134(24): 2922-2930, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34855639

RESUMO

ABSTRACT: Colorectal cancer (CRC) is one of the most prevalent, most lethal cancers in the world. Increasing evidence suggests that the intestinal microbiota is closely related to the pathogenesis and prognosis of CRC. The normal microbiota plays an essential role in maintaining gut barrier function and the immune microenvironment. Recent studies have identified carcinogenic bacteria such as enterotoxigenic Bacteroides fragilis (ETBF) and Streptococcus gallolyticus (S. gallolyticus), as well as protective bacterial such as Akkermansia muciniphila (A. muciniphila), as potential targets of CRC treatment. Gut microbiota modulation aims to restore gut dysbiosis, regulate the intestinal immune system and prevent from pathogen invasion, all of which are beneficial for CRC prevention and prognosis. The utility of probiotics, prebiotics, postbiotics, fecal microbiota transplantation and dietary inventions to treat CRC makes them novel microbe-based management tools. In this review, we describe the mechanisms involved in bacteria-derived colorectal carcinogenesis and summarized novel bacteria-related therapies for CRC. In summary, we hope to facilitate clinical applications of intestinal bacteria for preventing and treating CRC.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Neoplasias Colorretais/terapia , Disbiose , Transplante de Microbiota Fecal , Humanos , Prebióticos , Microambiente Tumoral
2.
Neuroreport ; 31(10): 730-736, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32501888

RESUMO

We previously reported that intraspinal transplantation of human amniotic mesenchymal stem cells (hAMSCs) promotes functional recovery in a rat model of acute traumatic spinal cord injury (SCI). However, whether intravenous transplantation of hAMSCs also has therapeutic benefit remains uncertain. In this study, we assessed whether intravenous transplantation of hAMSCs improves outcomes in rats with acute traumatic SCI. In addition, the potential mechanisms underlying the possible benefits of this therapy were investigated. Adult female Sprague-Dawley rats were subjected to SCI using a weight drop device, and then hAMSCs or PBS were administered after 2 h via the tail vein. Our results indicated that transplanted hAMSCs could migrate to injured spinal cord lesion. Compared with the control group, hAMSCs transplantation significantly decreased the numbers of ED1 macrophages/microglia and caspase-3 cells, and reduced levels of inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-6 and IL-1ß. In addition, hAMSCs transplantation significantly attenuated Evans blue extravasation, promoted angiogenesis and axonal regeneration. hAMSCs transplantation also significantly improved functional recovery. These results suggest that intravenous administration of hAMSCs provides neuroprotective effects in rats after acute SCI, and could be an alternative therapeutic approach for the treatment of acute SCI.


Assuntos
Administração Intravenosa/métodos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Traumatismos da Medula Espinal/terapia , Líquido Amniótico/citologia , Animais , Apoptose , Células Cultivadas , Feminino , Humanos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...